

كلية هندسة الحاسوب والمعلوماتية والاتصالات

Faculty of Computer & Informatics and Communications Engineering

Logic Circuits Dr. Eng. Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy,

istamo48@mail.ru

6-1. Boolean Operations and Expressions (التعابير والعمليات البولينية)

Variable, complement and literal are terms used in Boolean algebra.

- A variable (عنصر متغير) is a symbol used to represent an action, a condition, or data. A single variable can only have a value of 1 or 0.
- The complement (متمم) represents the inverse of a variable and is indicated with an overbar (خط فوق الرمز).

Thus, the complement of A is A.

A literal (بیانات حرفیة) is a variable or its complement.

Addition is equivalent to the **OR** operation. The basic rules are shown in Fig.

- In Boolean algebra, a sum term is a sum of literals.
- In logic circuits, a sum term is produced by an OR operation with no AND operations involved. Some examples of sum terms are

 $A+B; A+\overline{B}; A+B+\overline{C}; \overline{A}+B+C+\overline{D}$

Boolean Multiplication operation

In Boolean algebra, multiplication is equivalent to the AND operation. The basic rules are shown in Fig. $0 \cdot 0 = 0$ $0 \cdot 1 = 0$ $0 \cdot 1 = 0$ $1 \cdot 1 = 1$

- In Boolean algebra, a product term is the product of literals.
- In logic circuits, a product term is produced by an AND operation with no OR operations involved.
- Some examples of product terms are: AB; $A\overline{B}$; ABC; $A\overline{B}C\overline{D}$

Example 5-1 Determine the values of *A*, *B*, C and D that make the sum term of $A + \overline{B} + C + \overline{D} = 0$?

For the sum term to be 0, each literal must = 0;

therefore A = 0, B = 1 (so that B = 0), C = 0, and D = 1 (so that D = 0).

 $A + \overline{B} + C + \overline{D} = 0 + \overline{1} + 0 + \overline{1} = 0 + 0 + 0 + 0 = 0$

Determine the values of A, B, C and D that make the product term of the expression ABCD = 1?

Solution For the sum term to be 1, each literal must = 1; therefore A = 1, B = 0 (so that $\overline{B} = 1$), C = 1, and D = 0 (so that $\overline{D} = 1$).

 $A\overline{B}C\overline{D} = 1 \cdot \overline{0} \cdot 1 \cdot \overline{0} = 1 \cdot 1 \cdot 1 \cdot 1 = 1$

(قانون التوزيع) Distributive Law

X = A(B)

B

C اقانون العوامل) The distributive law is the factoring law ال

B + C

A common variable can be factored (مطلة إلى عوامل) from an expression just as in ordinary algebra. That is $A \cdot (B+C) = A \cdot B + A \cdot C$

AB

AC

X = AB + AC

X

Rules of Boolean Algebra

Rule_11:
$$A + \overline{AB} = A + B$$
This rule can be proved as follows: $A + \overline{AB} = (A + AB) + \overline{AB}$ $Rul_10: A = A + AB$ $= (AA + AB) + \overline{AB}$ $Rul_7: A = AA$ $= AA + AB + A\overline{A} + \overline{AB}$ $Rul_8: adding A\overline{A} = 0$ $= (A + \overline{A})(A + B)$ Distributed law $= 1 \cdot (A + B)$ $Rul_6: A + \overline{A} = 1$ $= A + B$ $Rul_8 = 0$

The truth table and resulting logic circuit simplification is

Rules of Boolean Algebra

Bule 12: (A + B)(A + C) = A + BC

Rule_12: (A + B)(A + C) = A + BCThis rule can be proved as follows: (A+B)(A+C) = AA + AC + AB + BCDistributed law $Rul_7: A = AA$ = A + AC + AB + BC= A(1+C) + AB + BCDistributed law **Rul**_2: 1+C=1 $= A \cdot 1 + AB + BC$ =A(1+B)+BCDistributed law $= A \cdot 1 + BC$ Rul 2: 1 + B = 1= A + BCRul 4: $A \cdot 1 = A$

The truth table and resulting logic circuit simplification is

A	В	C	A + B	A + C	(A + B)(A + C)	BC	A + BC	
0	0	0	0	0	0	0	0	-
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	
0	1	1	• 1	1	1	1	1	$c \rightarrow c$
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	· · · _
1	1	0	1	1	1	0	1	
1	1	1	1	1	1	1	1	\tilde{c}
		*			t	— equal ——	<u>†</u>	

14

A, B, or C can represent a single variable or a combination of variables.

6-4. DeMorgan's Theorems

DeMorgan's first Theorem

DeMorgan's first theorem is stated as follows:

- The complement of a product of variables is equal to the sum of the complements of the variables.
- The formula for expressing this theorem for two variables is $\overline{XY} = \overline{X} + \overline{Y}$

	Inp	uts	Ou	itput
	X	Y	XY	$\overline{X} + \overline{Y}$
X = X = X	0	0	1	1
	0	1	1	1
NAND Negative-OR	1	0	1	1
	1	1	0	0

DeMorgan's second Theorem

DeMorgan's second theorem is stated as follows:

- The complement of a sum of variables is equal to the product of the complements of the variables.
- The formula for expressing this theorem for two variables is

 $\overline{X+Y} = \overline{X} \cdot \overline{Y}$

Y

	Inputs		Output	
	X	Y	$\overline{X+Y}$	\overline{X}
$X = \sum_{Y \to 0} \overline{X + Y} \equiv X = \overline{X + Y}$	0	0	1	1
	0	1	0	0
NOR Negative-AND	1	0	0	0
	1	1	0	0
Dr. Eng. Hassa	an Ahm	ad 16	July 2018	

Applying DeMorgan's Theorems

The following procedure illustrates the application of DeMorgan's theorems and Boolean algebra to the specific expression $A + B\overline{C} + D(\overline{E + \overline{F}})$

Step 1: Identify the terms to which you can apply DeMorgan's theorems, and think of each term as a single variable. Let $\overline{A} + B\overline{\overline{C}} = X$ and $D(\overline{E + \overline{F}}) = Y$.

Step 2: Since $\overline{X + Y} = \overline{X}\overline{Y}$,

$$\overline{(\overline{A + B\overline{C}}) + (\overline{D(E + \overline{F})})} = (\overline{\overline{A + B\overline{C}}})(\overline{D(\overline{E + \overline{F}})})$$

Step 3: Use rule 9 ($\overline{\overline{A}} = A$) to cancel the double bars over the left term (this is not part of DeMorgan's theorem).

$$(\overline{A + B\overline{C}})(\overline{D(E + \overline{F})}) = (A + B\overline{C})(\overline{D(E + \overline{F})})$$

Step 4: Apply DeMorgan's theorem to the second term.

$$A + B\overline{C})(\overline{D}(\overline{E + \overline{F}})) = (A + B\overline{C})(\overline{D} + (\overline{E + \overline{F}}))$$

Step 5: Use rule 9 ($\overline{\overline{A}} = A$) to cancel the double bars over the $E + \overline{F}$ part of the term. $(A + B\overline{C})(\overline{D} + \overline{\overline{E + F}}) = (A + B\overline{C})(\overline{D} + E + \overline{F})$ Example 6-4 Apply DeMorgan's theorems to each of the following expressions:

(a) $\overline{(A + B + C)D}$ (b) $\overline{ABC + DEF}$

Solution

(a) Let A + B + C = X and D = Y. The expression (A + B + C)D is of the form $\overline{XY} = \overline{X} + \overline{Y}$ and can be rewritten as $\overline{(A + B + C)D} = \overline{A + B + C} + \overline{D}$ Next, apply DeMorgan's theorem to the term A + B + C. $\overline{A + B + C} + \overline{D} = \overline{A}\overline{B}\overline{C} + \overline{D}$ (b) Let ABC = X and DEF = Y. The expression $\overline{ABC + DEF}$ is of the form $\overline{X + Y} = \overline{X}\overline{Y}$ and can be rewritten as $\overline{ABC} + \overline{DEF} = (\overline{ABC})(\overline{DEF})$ Next, apply DeMorgan's theorem to each of the terms \overline{ABC} and \overline{DEF} . $(\overline{ABC})(\overline{DEF}) = (\overline{A} + \overline{B} + \overline{C})(\overline{D} + \overline{E} + \overline{F})$ (c) Let $A\overline{B} = X$, $\overline{CD} = Y$, and EF = Z. The expression $\overline{A\overline{B} + \overline{CD} + EF}$ is of the form $\overline{X + Y + Z} = \overline{X}\overline{Y}\overline{Z}$ and can be rewritten as $\overline{AB} + \overline{CD} + EF = (\overline{AB})(\overline{CD})(\overline{EF})$

Next, apply DeMorgan's theorem to each of the terms \overline{AB} , \overline{CD} , and \overline{EF} .

 $(\overline{A\overline{B}})(\overline{\overline{C}D})(\overline{EF}) = (\overline{A} + B)(C + \overline{D})(\overline{E} + \overline{F})$

Dr. Eng. Hassan Ahmad 16 July 2018

(c) $A\overline{B} + \overline{C}D + E\overline{F}$

6-5. Boolean Analysis of Logic Circuits

- Combinational (التوافقية) logic circuits can be analyzed by writing the expression for each gate and combining the expressions according to the rules for Boolean algebra.
- □ For the example, circuit in Fig.

Therefore, the expression for this AND gate is A(B + CD), which is the final output expression for the entire circuit.

A(B + CD)

B + CD

Given the logic circuit. Apply Boolean algebra to derive the

Solution

Exan

Write the expression for each gate:

For NOR (NOT-OR) gate with A and B inputs we have: A + B
For AND gate with A + B and C inputs we have: C(A + B)
For OR gate with C(A + B) and D inputs we have: C(A + B) + D
Therefore, X = C(A + B) + D

Applying DeMorgan's theorems and the distribution law:

$$\overline{A+B} = \overline{A} \cdot \overline{B} \Longrightarrow X = C(\overline{A} \cdot \overline{B}) + D = \overline{A} \cdot \overline{B} \cdot C + D$$

6-6. Logic Simplification Using Boolean Algebra (التبسيط المنطقي)

A simplified Boolean expression uses the fewest gates possible to implement a given expression.

EXAMPLE 5-5 Using Boolean algebra techniques, simplify this expression: AB + A(B+C) + B(B+C)

Step 1: Apply the distributive law to the second and third terms in the expression, as follows:

AB + AB + AC + BB + BC

Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC

Step 3: Apply rule 5(AB + AB = AB) to the first two terms.

AB + AC + B + BC

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

AB + AC + B

Step 5: Apply rule $10(AB + B \neq B)$ to the first and third terms.

B + AC

Basic rules of Boolean algebra.

1. $A + 0 = A$	7. $A \cdot A = A$
2. $A + 1 = 1$	8. $A \cdot \overline{A} = 0$
3. $A \cdot 0 = 0$	9. $\overline{\overline{A}} = A$
4. $A \cdot 1 = A$	10. $A + AB = A$
5. $A + A = A$	11. $A + \overline{A}B = A + B$
6. $A + \overline{A} = 1$	12. $(A + B)(A + C) = A + BC$

A, B, or C can represent a single variable or a combination of variables.

Example 6-7 Simplify the \overline{ABC} +

Simplify the following Boolean expression: $\overline{ABC} + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C + ABC$

Step 1: Factor BC out of the first and last terms.

$$BC(\overline{A} + A) + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}$$

Step 2: Apply rule 6 ($\overline{A} + A = 1$) to the term in parentheses, and factor $A\overline{B}$ from the second and last terms.

$$BC \cdot 1 + A\overline{B}(\overline{C} + C) + \overline{A}\overline{B}C$$

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 $(\overline{C} + C = 1)$ to the term in parentheses.

$$BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C}$$

Step 4: Apply rule 4 (drop the 1) to the second term.

 $BC + A\overline{B} + \overline{A}\overline{B}\overline{C}$

Step 5: Factor \overline{B} from the second and third terms.

 $BC + \overline{B}(A + \overline{A}\,\overline{C})$

Step 6: Apply rule 11 $(A + \overline{A} \overline{C} = A + \overline{C})$ to the term in parentheses.

$$BC + \overline{B}(A + \overline{C})$$

Step 7: Use the distributive and commutative laws to get the following expression:

 $BC + A\overline{B} + \overline{B}\overline{C}$

6-6. Standard Forms of Boolean Expressions (الصيغ النموذجية/ المعيارية للتعابير البولينية)

(جمع الجداءات) The Sum-of-Products (SOP) Form

□ When two or more product terms are summed by Boolean addition, the resulting expression is a sum-of-products (SOP). Examples: AB + ABC; $ABC + CDE + \overline{B}C\overline{D}$; $\overline{AB} + \overline{ABC} + AC$

AND/OR Implementation of an SOP Expression:

AB + BCD + AC

A

B

X = AB + BCD + AC

NAND/NAND Implementation of an SOP Expression:

X

В

- By using only NAND gates, an AND/OR function can be accomplished (يُنجز =), as illustrated in Figure.
- The first level of NAND gates feed into (يغذي) a NAND gate that acts as a negative-OR gate.

XΥ

NAND Negative-OR
The NAND and negative-OR inversions cancel and the result is effectively an AND/OR circuit.

X = AB + BCD + AC

 $\overline{X} + \overline{Y}$

Conversion of General Expression to SOP Form

Solution

Any logic expression can be changed into SOP form by applying Boolean algebra techniques.

For example, the expression A(B+CD) can be converted to SOP form by applying the distributive law: A(B+CD) = AB + ACD

EXAMPLE 6-8 Convert each of the following Boolean expressions to SOP form:

AB + B(CD + EF); (A + B)(B + C + D); (A + B) + C

AB + B(CD + EF) = AB + BCD + BEF;

(A+B)(B+C+D) = AB + AC + AD + BB + BC + BD;

 $(\overline{A+B}) + C = (\overline{A+B})\overline{C} = (A+B)\overline{C} = A\overline{C} + B\overline{C}$

SOP Standard form

□ In **SOP standard form**, every variable in the domain must appear in each term.

Another state is called **nonstandard form.**

For example:

Standard form: $A\overline{B}CD + \overline{A}\overline{B}C\overline{D} + AB\overline{C}\overline{D}$ Nonstandard form: $A\overline{B}C + \overline{A}\overline{B}\overline{D} + AB\overline{C}\overline{D}$

Converting Product Terms to Standard SOP

- A nonstandard SOP expression can be converted into standard form using Boolean algebra rule 6 ($A + \overline{A} = 1$).
- **Step 1: Multiply** each nonstandard product term by a term made up of the sum of a missing variable (المتغيرة الضائعة) and its complement.

Step 2: Repeat Step 1 until all resulting product terms contain all variables in the domain in either complemented or uncomplemented form.

Example 6-9 Convert the following Boolean expression into standard SOP form: $A\overline{B}C + \overline{A} \ \overline{B} + AB\overline{C}D$

Solution

The first term, ABC, is missing variable D or \overline{D} , so multiply the first term by $D + \overline{D}$ as follows: $A\overline{B}C = A\overline{B}C(D + \overline{D}) = A\overline{B}CD + A\overline{B}C\overline{D}$

The second term, $\overline{A} \ \overline{B}$, is missing variables C or \overline{C} and D or D, so first multiply the second term by $C + \overline{C}$ as follows: $\overline{A} \ \overline{B} = \overline{A} \ \overline{B} (C + \overline{C}) = \overline{A} \ \overline{B} \ C + \overline{A} \ \overline{B} \ \overline{C}$

The two resulting terms are missing variable D or \overline{D} , so multiply both terms by D + Das follows: $\overline{AB} = \overline{ABC} + \overline{ABC} = \overline{ABC}(D + \overline{D}) + \overline{ABC}(D + \overline{D})$

 $=\overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D}$

The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:

 $\overline{ABCD} + \overline{ABCD} + \overline{AB$

The Product-of-Sums (POS) Form (جداء المجاميع)

A

B

□ When two or more sum terms are multiplied, the resulting expression is a product-of-sums (POS).

Examples $(\overline{A} + B)(A + \overline{B} + C); \quad (\overline{A} + \overline{B} + \overline{C})(C + \overline{D} + E)(\overline{B} + C + D);$ $(A + B)(A + \overline{B} + C)(\overline{A} + C);$

Implementation of a POS Expression: (A+B)(B+C+D)(A+C)

-X = (A + B)(B + C + D)(A + C)

Standard Form of POS

□ In **POS standard form**, every variable in the domain must appear in each sum

term of the expression. Another state is called nonstandard form.

- □ For example,
- Standard form: $(\overline{A} + \overline{B} + \overline{C} + \overline{D})(A + \overline{B} + C + D)(A + B + \overline{C} + D)$ Nonstandard form: $(\overline{A} + \overline{B} + C)(A + B + \overline{D})(A + \overline{B} + \overline{C} + D)$ Converting a Sum Term to Standard POS
- A nonstandard POS expression is converted into standard form using Boolean algebra rule 8 ($A \cdot \overline{A} = 0$).
- **Step 1**: **Add** to each nonstandard product term a term made up of the product of the missing variable and its complement.
- **Step 2**: Apply rule 12: A + BC = (A + B)(A + C).

Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain in either complemented or uncomplemented form.

Convert the following Boolean expression into standard POS

form: $(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$

The first term, $(A + \overline{B} + C)$, is missing variable D or \overline{D} , so add $D\overline{D}$ and apply **rule** 12 as follows: $A + \overline{B} + C + D\overline{D} = (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})$

The second term, $(\overline{B} + C + \overline{D})$, is missing variable A or \overline{A} , so add AA and apply rule

12 as follows: $\overline{B} + C + \overline{D} + A\overline{A} = (A + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$

The third term, $A + \overline{B} + \overline{C} + D$, is already in standard form.

The standard POS form of the original expression is as follows:

 $(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D) =$

Example 6-10

 $(A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})(A + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$

Converting SOP Expressions to Truth Table Format

- The first step in constructing a truth table is to list all possible combinations of binary values of the variables in the expression.
- Next, convert the SOP expression to standard form if it is not already.
- Finally, place a 1 in the output column (X) for each binary value that makes the standard SOP expression equal to 1 and place a 0 for all the remaining (المتبقية) binary values.

This procedure is illustrated in Example 6-11.

Example 6-11 Develop a truth table for the standard SOP expression $\overline{ABC} + A\overline{BC} + ABC$ **Solution** equal to 1 are $\overline{ABC} = ABC$

\overline{ABC} :001; \overline{ABC} :100; ABC:111

For each of these binary values, place a 1 in the output column as shown in the table. For each of the remaining binary combinations, place a 0 in the output column.

	Inputs		Output	
A	В	С	X	Product Term
0	0	0	0	
0	0		1	$\overline{A}\overline{B}C$
0	1	0	0	
0	1	1	0	
1	0	0	1	$A\overline{B}\overline{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

Converting POS Expressions to Truth Table Format

To construct a truth table from a POS expression,

- First, list all the possible combinations of binary values of the variables just as was done for the SOP expression.
- Next, convert the POS expression to standard form if it is not already.
- Finally, place a 0 in the output column (*X*) for each binary value that makes the expression equal to 0 and place a 1 for all the remaining binary values.

This procedure is illustrated in Example 6–12.

Example 6-12 Determine the truth table for the following standard POS expression: $(A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$ The binary values that make the sum terms in the expression equal to 0 are

A + B + C:000; $A + \overline{B} + C:010;$ $A + \overline{B} + \overline{C}:011;$ $\overline{A} + B + \overline{C}:101;$ $\overline{A} + \overline{B} + C:110;$

For each of these binary values, place a 0 in the output column as shown in the table. For each of the remaining binary combinations, place a 1 in the output column.

	Inputs		Output	
A	B	С	X	Sum Term
0	0	0	0	(A + B + C)
0	0	1	1	
0	1	0	0	$(A + \overline{B} + C)$
0	1	1	0	$(A + \overline{B} + C) (A + \overline{B} + \overline{C})$
1	0	0	1	
1	0	1	0	$(\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + C)$
1	1	0	0	$(\overline{A} + \overline{B} + C)$
1	1	1	1	

