كـــــــــة هندسة الـحاسوب و المعلوماتية والاتصالات Faculty of Computer \& Informatics and Communications Engineering

Logic Circuits
 Dr. Eng.
 Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter_4
 Boolean Algebra (الجبر البوليني)

Lecture =06

Booleain Operations \& Laws

(القوانين والععليات الثبولبينةية)

6-1. Boolean Operations and Expressions (التعابير والعكليات البولينية)

Variable, complement and literal are terms used in Boolean algebra.
> A variable (عنصر متغير) is a symbol used to represent an action, a condition, or data. A single variable can only have a value of 1 or 0.
$>$ The complement (متهم) represents the inverse of a variable and is indicated with an overbar (خط فوق الرمز).
Thus, the complement of A is \bar{A}.
> A literal (بيانات حرفية) is a variable or its complement.

Boolean Addition operation

Addition is equivalent to the OR operation. The basic rules are shown in Fig.

- In Boolean algebra, a sum term is a sum of literals.
- In logic circuits, a sum term is produced by an OR operation with no AND operations involved. Some examples of sum terms are

$$
A+B ; A+\bar{B} ; A+B+\bar{C} ; \bar{A}+B+C+\bar{D}
$$

Boolean Multiplication operation

In Boolean algebra, multiplication is equivalent to the AND operation. The basic rules are shown in Fig.

- In Boolean algebra, a product term is the product of literals.
- In logic circuits, a product term is produced by an AND operation with no OR operations involved.
- Some examples of product terms are: $A B ; A \bar{B} ; A B C ; A \bar{B} C \bar{D}$ the expression $\quad A+\bar{B}+C+\bar{D}=0$?

For the sum term to be 0 , each literal must $=0$; therefore $A=0, B=1$ (so that $\bar{B}=0$), $C=0$, and $D=1$ (so that $\bar{D}=0$).

$$
A+\bar{B}+C+\bar{D}=0+\overline{1}+0+\overline{1}=0+0+0+0=0
$$

** product term of the expression $A \bar{B} C \bar{D}=1$?

SOl|l For the sum term to be 1 , each literal must $=1$; therefore $A=1, B=0$ (so that $\bar{B}=1$), $C=1$, and $D=0$ (so that $\bar{D}=1$).

$$
A \bar{B} C \bar{D}=1 \cdot \overline{0} \cdot 1 \cdot \overline{0}=1 \cdot 1 \cdot 1 \cdot 1=1
$$

6-2. Laws of Boolean Algebra (قو انين الجبر البوليني)

Commutative Laws (قو انين التبادل)

The commutative laws are applied to addition and multiplication.
$>$ For addition, the commutative law states $\quad A+B=B+A$

$>$ For multiplication, the commutative law states
$A \cdot B=B \cdot A$

Associative Laws (قو انين التجميع)

\square The associative laws are also applied to addition and multiplication.
\Rightarrow For addition, the commutative law states $\quad A+(B+C)=(A+B)+C$

$>$ For multiplication, the commutative law states $A \cdot(B \cdot C)=(A \cdot B) \cdot C$

Distributive Law (ققانون التوزيع)

[The distributive law is the factoring law (قانون العو (قل).
> A common variable can be factored (محالةً إلى عوامل) from an expression just as in ordinary algebra. That is

$$
A \cdot(B+C)=A \cdot B+A \cdot C
$$

6-3. Rules of Boolean Algebra (قواعد الجبر البوليني)

Rule_1: $\quad A+0=A$

$$
X=A+0=A
$$

Rule_2: $\quad A+1=1$

$$
X=A+1=1
$$

Rule_3: \quad. $\mathbf{0}=\mathbf{0}$

$$
A=1
$$

Rule_4: $\quad A .1=A$
$A=0$

$$
X=A \cdot 1=A
$$

Rules of Boolean Algebra

Rule_5: $\quad A+A=A$

$$
X=A+A=A
$$

Rule_6: $\quad A+\bar{A}=1$

$$
X=A+\bar{A}=1
$$

Rule_7: $\quad \boldsymbol{A} \cdot \boldsymbol{A}=\boldsymbol{A}$

$$
X=A \cdot A=A
$$

Rule_8: $\quad A \cdot \bar{A}=0$

Rule_9: $\quad \overline{\bar{A}}=A$

$$
X=A \cdot \bar{A}=0
$$

$$
\overline{\bar{A}}=A
$$

Rules of Boolean Algebra
Rule_10: $\boldsymbol{A}+\boldsymbol{A B}=\boldsymbol{A}$ This rule can be proved by applying the distributed law, rule_2, and rule_4 as follows:

$$
\begin{aligned}
A+A B & =A(1+B) & & \text { Distributive law } \\
& =A \cdot 1 & & \text { Rul_2: }(1+B)=1 \\
& =A & & \text { Rul_4:A•1=A}
\end{aligned}
$$

The truth table and resulting logic circuit simplification is

Rules of Boolean Algebra
Rule_11: $\boldsymbol{A}+\overline{\boldsymbol{A}} \boldsymbol{B}=\boldsymbol{A}+\boldsymbol{B}$ This rule can be proved as follows:

$$
\begin{aligned}
A+\bar{A} B & =(A+A B)+\bar{A} B & & \text { Rul_10: } A=A+A B \\
& =(A A+A B)+\bar{A} B & & \text { Rul_7: } A=A A \\
& =A A+A B+A \bar{A}+\bar{A} B & & \text { Rul_8:adding } A \bar{A}=0 \\
& =(A+\bar{A})(A+B) & & \text { Distributed law } \\
& =1 \cdot(A+B) & & \text { Rul_6:A+ } \bar{A}=1
\end{aligned}
$$

The truth table and resulting logic circuit simplification is Rule 11: $A+\bar{A} B=A+B$.

A	B	$\overline{A B}$	$A+\bar{A} B$	$A+B$	
0	0	0	0	0	
0	1	1	1	1	
1	0	0	1	1	
1	1	0	1	1	

Rules of Boolean Algebra
Rule_12: $(A+B)(A+C)=A+B C$

\[

\]

The truth table and resulting logic circuit simplification is

Rule 12: $(A+B)(A+C)=A+B C$.

A	B	C	$A+B$	$A+C$	$(A+B)(A+C)$	BC	$A+B C$	
0	0	0		0	0	0	0	
0	0	1		1	0	0	0	${ }_{B}^{A-0}$
0	1		1	0	0	0	0	
0	1		1	1	1	1	1	$C \longrightarrow$
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1		0	1	1	1	0	1	A B \square
1		1	1	1	1	1	1	$C \longrightarrow \square$

Basic rules of Boolean algebra.

1. $A+0=A \quad$ 7. $A \cdot A=A$
2. $A+1=1$
3. $A \cdot \bar{A}=0$
4. $A \cdot 0=0$
5. $\overline{\bar{A}}=A$
6. $A \cdot 1=A$
7. $A+A B=A$
8. $A+A=A$
9. $A+\bar{A} B=A+B$
10. $A+\bar{A}=1 \quad$ 12. $(A+B)(A+C)=A+B C$
A, B, or C can represent a single variable or a combination of variables.

6-4. DeMorgan's Theorems

DeMorgan's first Theorem

DeMorgan's first theorem is stated as follows:

- The complement of a product of variables is equal to the sum of the complements of the variables.
- The formula for expressing this theorem for two variables is $\overline{X Y}=\bar{X}+\bar{Y}$

DeMorgan's second Theorem

DeMorgan's second theorem is stated as follows:

- The complement of a sum of variables is equal to the product of the complements of the variables.
- The formula for expressing this theorem for two variables is $\overline{X+Y}=\bar{X} \cdot \bar{Y}$

Example 6-3

Applying DeMorgan's theorems to the expressions

$$
\begin{aligned}
& \overline{X Y Z} ; \quad \overline{X+Y+Z} \\
& \overline{W X Y Z} ; \quad \overline{W+X+Y+Z} \\
& \overline{X Y Z}=\bar{X}+\bar{Y}+\bar{Z} \\
& \overline{W X Y Z}=\bar{W}+\bar{X}+\bar{Y}+\bar{Z} \\
& \overline{X+Y+Z}=\bar{X} \bar{Y} \bar{Z} \\
& \overline{W+X+Y+Z}=\bar{W} \bar{X} \bar{Y} \bar{Z}
\end{aligned}
$$

Applying DeMorgan's Theorems

The following procedure illustrates the application of DeMorgan's theorems and Boolean algebra to the specific expression

$$
\overline{\overline{A+B \bar{C}}+D(\overline{E+\bar{F}})}
$$

Step 1: Identify the terms to which you can apply DeMorgan's theorems, and think of each term as a single variable. Let $\overline{A+B \bar{C}}=X$ and $D(\overline{E+\bar{F}})=Y$.
Step 2: Since $\overline{X+Y}=\bar{X} \bar{Y}$,

$$
\overline{(\overline{A+B \bar{C}})+(\overline{D(E+\bar{F}})})=(\overline{\overline{A+B} \bar{C}})(\overline{D(\overline{E+\bar{F}})})
$$

Step 3: Use rule $9(\overline{\bar{A}}=A)$ to cancel the double bars over the left term (this is not part of DeMorgan's theorem)

$$
(\overline{\overline{A+B \bar{C}}})(\overline{D(\overline{E+\bar{F}})})=(A+B \bar{C})(\overline{D(\overline{E+\bar{F}})})
$$

Step 4: Apply DeMorgan's theorem to the second term.

$$
(A+B \bar{C})(\overline{D(\overline{E+\bar{F}})})=(A+B \bar{C})(\bar{D}+(\overline{\overline{E+\bar{F}})})
$$

Step 5: Use rule $9(\overline{\bar{A}}=A)$ to cancel the double bars over the $E+\bar{F}$ part of the term.

$$
(A+B \bar{C})(\bar{D}+\overline{\overline{E+\bar{F}}})=(A+B \bar{C})(\bar{D}+E+\bar{F})
$$

Bample

Apply DeMorgan's theorems to each of the following expressions:
(a) $\overline{(A+B+C) D}$
(b) $\overline{A B C+D E F}$
(c) $A \bar{B}+\bar{C} D+E F$
(a) Let $A+B+C=X$ and $D=Y$. The expression $(\overline{A+B+C) D}$ is of the form $\overline{X Y}=\bar{X}+\bar{Y}$ and can be rewritten as

$$
\overline{(A+B+C) D}=\overline{A+B+C}+\bar{D}
$$

Next, apply DeMorgan's theorem to the term $\overline{A+B+C}$.

$$
\overline{A+B+C}+\bar{D}=\bar{A} \bar{B} \bar{C}+\bar{D}
$$

(b) Let $A B C=X$ and $D E F=Y$ The expression $\overline{A B C+D E F}$ is of the form $\overline{X+Y}=\bar{X} \bar{Y}$ and can be rewritten as

$$
\overline{A B C+D E F}=(\overline{A B C})(\overline{D E F})
$$

Next, apply DeMorgan's theorem to each of the terms $\overline{A B C}$ and $\overline{D E F}$.

$$
(\overline{A B C})(\overline{D E F})=(\bar{A}+\bar{B}+\bar{C})(\bar{D}+\bar{E}+\bar{F})
$$

(c) Let $A \bar{B}=X, \bar{C} D=Y$, and $E F=Z$. The expression $\overline{A \bar{B}+\overline{C D}+E F}$ is of the form $\bar{X}+Y+Z=\bar{X} \bar{Y} \bar{Z}$ and can be rewritten as

$$
\overline{A \bar{B}+\bar{C} D+E F}=(\overline{A \bar{B}})(\overline{\bar{C} D})(\overline{E F})
$$

Next, apply DeMorgan's theorem to each of the terms $\overline{A \bar{B}}, \overline{\bar{C} D}$, and $\overline{E F}$.

$$
(\overline{A \bar{B}})(\overline{\bar{C} D})(\overline{E F})=(\bar{A}+B)(C+\bar{D})(\bar{E}+\bar{F})
$$

6-5. Boolean Analysis of Logic Circuits

[] Combinational (التو افقية) logic circuits can be analyzed by writing the expression for each gate and combining the expressions according to the rules for Boolean algebra.
\square For the example, circuit in Fig.

Therefore, the expression for this AND gate is $A(B+C D)$, which is the final output apression for the entire circuit.

Example 6-5

Given the logic circuit. Apply Boolean algebra to derive the expression for X.

Solution

Write the expression for each gate:

1) For NOR (NOT-OR) gate with A and B inputs we have: $\overline{A+B}$
2) For AND gate with $\overline{A+B}$ and C inputs we have: $C(\overline{A+B})$
3) For OR gate with $C(\overline{A+B})$ and D inputs we have: $C(\overline{A+B})+D$

Therefore, $\quad X=C(\overline{A+B})+D$
Applying DeMorgan's theorems and the distribution law:

$$
\overline{A+B}=\bar{A} \cdot \bar{B} \Rightarrow X=C(\bar{A} \cdot \bar{B})+D=\bar{A} \cdot \bar{B} \cdot C+D
$$

Constructing a Truth Table for a Logic Circuit

Inputs				
A	B	C	D	Output
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

6-6. Logic Simplification Using Boolean Algebra (التّبيط المنطةي)

A simplified Boolean expression uses the fewest gates possible to implement a given expression.
YaII\|\& 6-6 Using Boolean algebra techniques, simplify this expression:

$$
A B+A(B+C)+B(B+C)
$$

Step 1: Apply the distributive law to the second and third terms in the expression, as follows:

$$
A B+A B+A C+B B+B C
$$

Basic rules of Boolean algebra.
Step 2: Apply rule $7(B B=B)$ to the fourth term.

$$
A B+A B+A C+B+B C
$$

Step 3: Apply rule $5(A B+A B=A B)$ to the first two terms.

$$
A B+A C+B+B C
$$

Step 4: Apply rule $10(B+B C=B)$ to the last two terms.

$$
A B+A C+B
$$

1. $A+0=A$	7. $A \cdot A=A$
2. $A+1=1$	8. $A \cdot \bar{A}=0$
3. $A \cdot 0=0$	9. $\overline{\bar{A}}=A$
4. $A \cdot 1=A$	10. $A+A B=A$
5. $A+A=A$	11. $A+\bar{A} B=A+B$
6. $A+\bar{A}=1$	12. $(A+B)(A+C)=A+B C$

A, B, or C can reppesenta single variable or a combination of variables.
Step 5: Apply rule $10(A B+B=B)$ to the first and third terms.

$$
B+A C
$$

$$
A B+A(B+C)+B(B+C) \equiv B+A C
$$

The simplified circuit

EMAIIDR S-7 Simplify the following Boolean expression:
 $$
\bar{A} B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C+A B C
$$

Step 1: Factor $B C$ out of the first and last terms.

$$
B C(\bar{A}+A)+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C
$$

Step 2: Apply rule $6(\bar{A}+A=1)$ to the term in parentheses, and factor $A \bar{B}$ from the second and last terms.

$$
B C \cdot 1+A \bar{B}(\bar{C}+C)+\bar{A} \bar{B} \bar{C}
$$

Step 3: Apply rule 4 (drop the 1) to the first term and rule $6(\bar{C}+C=1)$ to the term in parentheses.

$$
B C+A \bar{B} \cdot 1+\bar{A} \bar{B} \bar{C}
$$

Step 4: Apply rule 4 (drop the 1) to the second term.

$$
B C+A \bar{B}+\bar{A} \bar{B} \bar{C}
$$

Step 5: Factor \bar{B} from the second and third terms.

$$
B C+\bar{B}(A+\bar{A} \bar{C})
$$

Step 6: Apply rule $11(A+\bar{A} \bar{C}=A+\bar{C})$ to the term in parentheses.

$$
B C+\bar{B}(A+\bar{C})
$$

Step 7: Use the distributive and commutative laws to get the following expression:

$$
B C+A \bar{B}+\bar{B} \bar{C}
$$

6-6. Standard Forms of Boolean Expressions

(الصيغ النموذجية/ المعيارية للتعابير البولينية)

The Sum-of-Products (SOP) Form (جمع الجداءات)

\square When two or more product terms are summed by Boolean addition, the resulting expression is a sum-of-products (SOP).
Examples: $\quad A B+A B C ; \quad A B C+C D E+\bar{B} C \bar{D} ; \quad \bar{A} B+\bar{A} B \bar{C}+A C$
AND/OR Implementation of an SOP Expression:

$$
A B+B C D+A C
$$

NAND/NAND Implementation of an SOP Expression:

- By using only NAND gates, an AND/OR function can be accomplished (= يُنجز (يتحقق), as illustrated in Figure.
- The first level of NAND gates feed into (يغذي) a NAND gate that acts as a negative-OR gate.

- The NAND and negative-OR inversions cancel and the result is effectively an AND/OR circuit.

Conversion of General Expression to SOP Form

\square Any logic expression can be changed into SOP form by applying Boolean algebra techniques.
For example, the expression $A(B+C D)$ can be converted to SOP form by applying the distributive law: $A(B+C D)=\mathrm{AB}+\mathrm{ACD}$

Convert each of the following Boolean expressions to SOP form:

$$
A B+B(C D+E F) ; \quad(A+B)(B+C+D) ; \quad \overline{(\overline{A+B})+C}
$$

$$
\begin{aligned}
& A B+B(C D+E F)=A B+B C D+B E F \\
& (A+B)(B+C+D)=A B+A C+A D+B B+B C+B D \\
& \overline{(\overline{A+B})+C}=\overline{(\overline{\overline{A+B}})} \bar{C}=(A+B) \bar{C}=A \bar{C}+B \bar{C}
\end{aligned}
$$

SOP Standard form

In SOP standard form, every variable in the domain must appear in each term.
Another state is called nonstandard form.
For example:
Standard form: $\quad A \bar{B} C D+\bar{A} \bar{B} C \bar{D}+A B \bar{C} \bar{D}$
Nonstandard form: $\quad A \bar{B} C+\bar{A} \bar{B} \bar{D}+A B \bar{C} \bar{D}$
Converting Product Terms to Standard SOP

- A nonstandard SOP expression can be converted into standard form using Boolean algebra rule $6(A+\bar{A}=1)$.

Step 1: Multiply each nonstandard product term by a term made up of the sum of a missing variable (المتغيرة الصـائعة) and its complement.

Step 2: Repeat Step 1 until all resulting product terms contain all variables in the domain in either complemented or uncomplemented form.

Convert the following Boolean expression into standard SOP

$$
A \bar{B} C+\bar{A} \bar{B}+A B \bar{C} D
$$

The first term, $A \bar{B} C$, is missing variable D or \bar{D}, so multiply the first term by $D+\bar{D}$ as follows:

$$
A \bar{B} C=A \bar{B} C(D+\bar{D})=A \bar{B} C D+A \bar{B} C \bar{D}
$$

The second term, $\bar{A} \bar{B}$, is missing variables C or \bar{C} and D or \bar{D}, so first multiply the second term by $C+\bar{C}$ as follows: $\bar{A} \bar{B}=\bar{A} \bar{B}(C+\bar{C})=\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}$

The two resulting terms are missing variable D or \bar{D}, so multiply both terms by $D+\bar{D}$ as follows:

$$
\begin{aligned}
\bar{A} \bar{B} & =\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C}=\bar{A} \bar{B} C(D+\bar{D})+\bar{A} \bar{B} \bar{C}(D+\bar{D}) \\
& =\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} \bar{D}
\end{aligned}
$$

The third term, $A B \bar{C} D$, is already in standard form.
The complete standard SOP form of the original expression is as follows:

$$
A \bar{B} C D+A \bar{B} C \bar{D}+\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} \bar{D}+A B \bar{C} D
$$

The Product-of-Sums (POS) Form (جداء المجاميح)

\square When two or more sum terms are multiplied, the resulting expression is a product-of-sums (POS).

Examples

$$
\begin{gathered}
(\bar{A}+B)(A+\bar{B}+C) ; \quad(\bar{A}+\bar{B}+\bar{C})(C+\bar{D}+E)(\bar{B}+C+D) ; \\
(A+B)(A+\bar{B}+C)(\bar{A}+C) ;
\end{gathered}
$$

Implementation of a POS Expression:

$$
(A+B)(B+C+D)(A+C)
$$

Standard Form of POS

\square In POS standard form, every variable in the domain must appear in each sum term of the expression. Another state is called nonstandard form.
\square For example,
Standard form:

$$
\begin{aligned}
& (\bar{A}+\bar{B}+\bar{C}+\bar{D})(A+\bar{B}+C+D)(A+B+\bar{C}+D) \\
& \quad(\bar{A}+\bar{B}+C)(A+B+\bar{D})(A+\bar{B}+\bar{C}+D)
\end{aligned}
$$

Nonstandard form:
Converting a Sum Term to Standard POS

- A nonstandard POS expression is converted into standard form using Boolean algebra rule $8(A \cdot \bar{A}=0)$.

Step 1: Add to each nonstandard product term a term made up of the product of the missing variable and its complement.

Step 2: Apply rule $12: A+B C=(A+B)(A+C)$.
Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain in either complemented or uncomplemented form.

EAIII\| f-10 Convert the following Boolean expression into standard POS

 form:$$
(A+\bar{B}+C)(\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)
$$

The first term, $(A+\bar{B}+C)$, is missing variable D or \bar{D}, so add $D \bar{D}$ and apply rule 12 as follows: $\quad A+\bar{B}+C+D \bar{D}=(A+\bar{B}+C+D)(A+\bar{B}+C+\bar{D})$
The second term, $(\bar{B}+C+\bar{D})$, is missing variable A or \bar{A}, so add $A \bar{A}$ and apply rule 12 as follows: $\quad \bar{B}+C+\bar{D}+A \bar{A}=(A+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+C+\bar{D})$
The third term, $A+\bar{B}+\bar{C}+D$, is already in standard form.
The standard POS form of the original expression is as follows:

$$
\begin{aligned}
& (A+\bar{B}+C)(\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)= \\
& (A+\bar{B}+C+D)(A+\bar{B}+C+\bar{D})(A+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)
\end{aligned}
$$

Converting SOP Expressions to Truth Table Format

- The first step in constructing a truth table is to list all possible combinations of binary values of the variables in the expression.
- Next, convert the SOP expression to standard form if it is not already.
- Finally, place a 1 in the output column (\boldsymbol{X}) for each binary value that makes the standard SOP expression equal to $\mathbf{1}$ and place a $\mathbf{0}$ for all the remaining (المنقفة) binary values.

This procedure is illustrated in Example 6-11.

Example 6-11

Develop a truth table for the standard SOP expression

$$
\bar{A} \bar{B} C+A \bar{B} \bar{C}+A B C
$$

The binary values that make the product terms in the expressions equal to 1 are

$$
\bar{A} \bar{B} C: 001 ; \quad A \bar{B} \bar{C}: 100 ; \quad A B C: 111
$$

For each of these binary values, place a 1 in the output column as shown in the table. For each of the remaining binary combinations, place a 0 in the output column.

Inputs				Output
A	B	C	X	Product Term
0	0	0	0	
0	0		1	$\bar{A} \bar{B} C$
0		0	0	
0	1	1	0	
1	0	0	1	$A \bar{B} \bar{C}$
1	0	1	0	
1	1	0	0	
1	1	1	1	$A B C$

Converting POS Expressions to Truth Table Format

To construct a truth table from a POS expression,

- First, list all the possible combinations of binary values of the variables just as was done for the SOP expression.
- Next, convert the POS expression to standard form if it is not already.
- Finally, place a 0 in the output column (\boldsymbol{X}) for each binary value that makes the expression equal to 0 and place a 1 for all the remaining binary values. This procedure is illustrated in Example 6-12.

Determine the truth table for the following standard POS

expression:

$$
(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+C)
$$

The binary values that make the sum terms in the expression equal to 0 are

$$
A+B+C: 000 ; \quad A+\bar{B}+C: 010 ; \quad A+\bar{B}+\bar{C}: 011 ; \bar{A}+B+\bar{C}: 101 ; \bar{A}+\bar{B}+C: 110 ;
$$

For each of these binary values, place a 0 in the output column as shown in the table. For each of the remaining binary combinations, place a 1 in the output column.

Inputs			Output	
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{X}	Sum Term
0	0	0	0	$(A+B+C)$
0	0	1	1	
0	1	0	0	$(A+\bar{B}+C)$
0	1	1	0	$(A+\bar{B}+\bar{C})$
1	0	0	1	
1	0	1	0	$(\bar{A}+B+\bar{C})$
1	1	0	0	$(\bar{A}+\bar{B}+C)$
1	1	1	1	

The end of Lecture_06. chapter 4

